NONTANGENTIAL CONVERGENCE OF THE GENERALIZED POISSON-ABEL MEANS

Nakhman Alexander D.
Tambov State Technical University, Tambov, Russia
e-mail: alextmb@mail.ru

Abstract. The means of Fourier series \(U(f, y; \lambda, h) \) generated by semi-continuous summation methods \(\Lambda = \{ \lambda_k(h), k = 0, 1, \ldots; h > 0 \} \) are studied. For the points \((y, h) \), belonging to an angular domain \(\Gamma_d(x) \), upper \(L^p \)-estimates of the corresponding maximal operators are obtained. Nontangential convergence almost everywhere of the generalized Poisson-Abel means, corresponding to a case of \(\lambda_k(h) = \exp(-hk^\alpha), \ k = 0, 1, \ldots; \ \alpha \geq 1 \), is established.

Keywords. Exponential summation methods, estimates of \(L^p \)-norms, nontangential convergence.

1. Introduction. Formulation of the problem. Let \(L_{2\pi} \) be class of \(2\pi \)-periodical functions, which are summable on \([-\pi, \pi]\) and \(C^2(0, +\infty) \) – class of functions having continuous second derivative on \((0, +\infty)\). In this paper we consider the semi-continuous means

\[
U(f, y; \lambda, h) = \sum_{k=-\infty}^{\infty} \lambda_k(h) c_k(f) \exp(iky)
\]

of Fourier series \(s[f] \) of functions \(f \in L_{2\pi} \). In the definition (1)

\[
c_k(f) = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(t) \exp(-ikt) dt, \ k = 0, \pm 1, \pm 2, \ldots
\]

are complex Fourier coefficients of function \(f \).

We study the problem of behavior (1) at \((y, h) \to (x, 0) \), when the point \((y, h) \) is within the boundaries of the angular domain

\[
\Gamma_d(x) = \{(y, h) \mid y \in [-\pi, \pi], h > 0, \ |y-x|_h \leq d\}, \ d = const, \ d > 0.
\]

The case of “radial” convergence \(U(f, x; \lambda, h) \to f(x) \) at \(h \to +0 \) was investigated in [1].

2. The main result. Define

\[
U_*(f) = U_*(f, x; \lambda) = \sup_{(y, h) \in \Gamma_d(x)} |U(f, y; \lambda, h)|;
\]

let \(m = \left\lfloor \frac{1}{2dh} \right\rfloor \) and

\[
f^*(x) = \sup_{\eta>0} \frac{1}{2\eta} \int_{x-\eta}^{x+\eta} |f(t)| \, dt
\]

be Hardy maximal function ([2], vol.1, p.55).

Theorem 1. Let the sequence \(\{\lambda_N(h)\} \) decreases so rapidly that

\[
N |\lambda_N(h)| + N^2 |\Delta \lambda_N(h)| = o(1), \ N \to \infty, \tag{2}
\]

and there is a constant \(C = C_{\lambda,d} \) such that
\[
\sum_{k=0}^{\infty} \frac{(m+k+1)(k+1)}{m} |\Delta^2 \lambda_k(h)| \leq C.
\]
(3)

Then for every \(x \) the estimate

\[
U^*(f, x; \lambda) \leq C_{\Lambda, d} \; f^*(x)
\]

holds.

Here and throughout the paper \(C \) will represent constants, which depend only on the explicitly specified indexes.

3. \(L^p \)-estimates. Let

\[
\| f \|_p = \left(\int_{-\pi}^{\pi} |f(x)|^p \, dx \right)^{1/p}
\]

be a norm in Lebesgue space \(L^p \) (\(p > 0 \); \(L = L^1 \); \(\| f \| = \| f \|_1 \)).

Theorem 2. If the sequence \(\Lambda \) satisfies the conditions (2) and (3), the following estimates

\[
\| U^*(f) \|_p \leq C_{p, \Lambda} \| (f) \|_p, \; p > 1;
\]

\[
\| U^*(f) \| \leq C_{\Lambda} (1+ \| (f) \|) ;
\]

\[
\| U^*(f) \|_p \leq C_{p, \Lambda} \| (f) \|, \; 0 < p < 1 .
\]

(4)

hold.

Theorem 3. If \(f \in L_{2\pi} \), the sequence \(\Lambda \) satisfies (2), (3) and

\[
\lim_{h \to 0} \lambda_k(h) = 1, \; k = 0, 1, \ldots,
\]

then the relation

\[
\lim_{(y,h)\to(x,0)} U(f, y; \lambda, h) = f(x)
\]

holds almost everywhere.

This theorem can be proved by the standard method ([1], vol. 2, pp. 464-465) due to the estimate (4).

4. Exponential means. Denote now

\[
\lambda_0(h) = 1, \quad \lambda_k(h) = \lambda(x, h) |_{x=k}, \; k = 1, 2, \ldots,
\]

where \(\lambda(x, h) = \exp(-h \varphi(x)) \), and require the following conditions:

A) \(\varphi \in C^2(0, +\infty); \; \varphi(x) \geq 0, \; \varphi'(x) \geq 0, \; \varphi''(x) \geq 0, \; x \in (0, +\infty) ;
\)

B) \(x^2 \left(\varphi'(x) \right)^2 \exp(-h \varphi(x)) \) and \(x^2 |\varphi''(x)| \exp(-h \varphi(x)) \) decrease to zero as \(x \) increases.

Note that

\[
\lambda''_x(x,h) = h \exp(-h \varphi(x))(h \varphi'(x))^2 - \varphi''(x)
\]

and apply twice the Lagrange theorem to the second finite differences in (3).

Under the conditions of B) the sum of (3) is majorized by a corresponding improper integral and for implementability of statements of Theorems 1, 2, 3 it is sufficient to require

\[
\int_{0}^{\infty} (h^2 \varphi'(x))^2 + h |\varphi''(x)| (x + h x^2) \exp(-h \varphi(x)) \, dx \leq C_{\varphi}.
\]

5. Generalized Poisson-Abel means. Consider in particular the case \(\varphi(x) = x^{\alpha}, \; \alpha \geq 1 \), then

\[
\lambda_0(h) = 1, \; \lambda_k(h) = \exp(-hk^{\alpha}), \; k = 1, 2, \ldots; \; \alpha \geq 1.
\]

Corollary 1. The statements of Theorems 2 and 3 are valid for generalized Poisson-Abel means.
\[\sigma(f, y; \alpha, h) = \sum_{k=-\infty}^{\infty} \exp(-h |k|^\alpha) c_k(f) \exp(iky) \]

for all \(\alpha \geq 1 \); the constants \(C \) in the estimates of \(L^p \)-norms is \(C = C_{\alpha, p} \).

In particular, the relation

\[\lim_{(y, h) \to (x, 0)} \sum_{k=-\infty}^{\infty} \exp(-h |k|) c_k(f) \exp(iky) = f(x), \ f \in L_{2\pi}, \]

(nontangential convergence of Poisson-Abel means) holds for almost all \(x \).

6. Exponentially-polynomial summation methods. Let now \(\phi(x) \) is a polynomial function of \(n \)-th degree

\[P_n(x) = a_n x^n + a_{n-1} x^{n-1} + \ldots + a_0, \ a_n > 0; \ n = 1,2,\ldots \]

Corollary 2. The assertions of Theorems 2 and 3 are valid for exponentially-polynomial means

\[\sigma(f, y; n, h) = \sum_{k=-\infty}^{\infty} \exp(-h P_n(|k|)) c_k(f) \exp(iky) \]

for all \(n = 1,2,\ldots \); the constants \(C \) in the estimates of \(L^p \)-norms is \(C = C_{n, p} \).

References