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Summary.

General or temporal equation of Schrédinger is thematic expression of dual trait of
corpuscular-wave nature of microparticles of madtadt plays fundamental part in nonrelativistic
quantum mechanics [1].

If amount of potential energy of field is constamathematical dependence between
quantitative characteristics of vector field does contain derivative of time, and dynamic
model of Schrodinger becomes stationary. Such exquit used, for example, while studying
process of quantization of energy of harmonic tstoi, rotator with free axis, in spectral theory
of atoms while studying motion of electrons in @b field of core, etc. [2].

The presented work studies elliptic equation that modification of stationary equation
of Schrédinger. It proves existence and singulaftgolution to the problem of Dirichlet in
circle for linear differential equation of the sedoorder with special point in the center of
research area. The main result of the work is coastn of special functions — multiple
multinomials of triangle sort, used in calculaticaefficients of a line that represents solution.
Bibliographic list — 4 items.
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Setting the problem.
Let us study stationary equation of Schrédingehwio independent variables that can
be formally put in the following expression withqhtysical sense of arguments [3]:
Uy + Uyy = f(x* +y2) .

In certain cases while= —(x? + y?)!, 1 >0 correct settings of edge problems in certain
conditions are found for the mentioned equafibr- 5].

The presented work studies:



Problem 1: InareaD = { (x,y): x?+y? < R?} should be found a solution to equation

2+ 2
uxx+uyy_szsz+yzu:0' (1D
that will satisfy border condition
ulsp =h, h>3C2%(D). 2)

Notice 1. Further we shall consider circle radius as & aingcale of the studied system of
coordinates R=1 in order to simplify calculations.

Dividing variables according to method of Fourier.

Unconventional solution of border problem 1 willlbeated in polar coordinates as

u(p, @) = F(o) ¥(p). 3
As a result of placing product (3) into equatiohdfhd dividing variables with constakive
receive equation for the functi®¥(p)

PP 4o — (X +A)w =0, 4)

1+p?
and problem for proper values for the functitip)
F' + AF =0, } )
F(¢) =F (¢ + 2m).
General solution of homogeneous linear equations(8gfined via characteristic equation,
presented as superposition of harmonics

F(¢) = Acos(VAg) + Bsin(vVAg).

If Fis to be single —valued periodic function, thédwaling conditions must be satisfied:
A cos (\/X(((p + 211))) + Bsin (\/X((p + +21T)) =
= Acos(\/x @ + 2mV/A ) + Bsin (\/X @+ Zn\/X).

Selecting proper values af=A,, = n?, we receive

E, (@) = A, cos(ng) + Bysin (ng), n=0;1;2;.... (6)
For every fixed value of n of (4) we receive

p2W/ + pW¥) — (% + nz) Y, =0. (7)

Since equation (7) for each givan= 0; 1; 2; .... has a special point whifg= 0, solution of it
will be presented as a degree line that starts pfith [6]:

l'pn = psn 220 Cin pi = psn (CO,n + CinP + Ci,npz-l'- - -l'ci,npi + ) (8)

Values of characteristic index and coefficients ofc;,, can be defined via placing line (8) into
equation (7). As we consequently equalize coefiitsidyx®, xt+1,x5*2, .. to zero, we receive a
system of equations:



(62 —=n?)cy, =0, )
[(e + 1)? —n?]c; = 0,
[(e + 2)? —n?]c, = 0,
[(e +3)? —n?]c3 = 0,
[(e + 4)? — n?]c, = ¢y,
[(e +5)* —n®lcs = ¢y,
[(£ + 6)% —n?]cg = ¢, — Cy,
[(e +7)* —n®lc; = c3 — ¢y, (
[(e +8)2 —n?]cg = ¢4, — ¢y + €y,
[(e +9)? —n?]cg = c5 — c3 + ¢4,

[(e +10)2 —n?]cyg = cg — €4 + €5 — Cp,
[(e +11)2 —n?]cy; = ¢; — ¢ + ¢3 — ¢y,
[(e +12)%2 —n?]c;, = cg —Cg + €4 — €y + Cy,
[(e+13)2 —n?]ci3 =g —C7 + €5 — 3 + ¢4,

Consideringzy # 0, from the first equation we finde = +n.
In order to define singular border whge— 0 we consider solution of equation (7)s&s=
n, n=0;1;2;... Then, from the last system we concludg, = c,,, = c3,, = 0. In this case
all further odd coefficients af,;,1,,, { = 2; 3; ... must also equal zero, and all even coefficients

are defined through the sum of previous ones acuptd alternative formulas

_ Cpimap— A0-1)(=14M)Coi-2n . _ 5. 0.
CZL,n - 2i(i+n) , L= 2, 3, vy \
_ wi-2 (it C2jn .
C2in = Zj=0—4i(i+n) ) 1=2;3; ..., | (9)
i (- Caj ,
, = L S L =0U:1:
Ca+2in ZJ:O4(2+L‘)(2+i+n) ’ (=01 ... )
Consequent implementation of formula (9) whiite 0; 1; 2; 3; ... allows us to receive
expressionc,;, through cgy,:
c — Con c S Con c — Con [ 1 ]
AN T 42(24n)’ 6n T 4.3(3+n)’ 8N T 4.4(4+n) 4-2(2+n))’
_ - CO,H + 1 + 1
“on T s B m T 422 +n)  4-33B+n))
. _ con [ 1 1 LS 1 ]
12n ™ 4.6(6+n) 42(2+n) ' 43(3+n) = 4-4(4+n) 42.2:4 (2+n) (4+n) |
C _ —Con [ 1 1 1 1 1
140 ™ 4.7(74n) 42(2+n) = 43(3+n) = 44 (4+n) = 45 (5+n) 42.2:4 (2+n) (4+n)

1 n 1 ]
42.2-5 (2+n) (5+n) 42-3-5 (3+n) (5+n) I’



- Con 1 1 1 1 1

C16n = g @+ tizem Tisem Trsam Tt isem T 4-6 (6+n)
1 + 1 n 1 n 1
42.2:4 (2+4n) (4+n) 42.2.5 (2+n) (5+n) 42.2:6 (2+n) (6+n) 42.3.5 (3+n) (5+n)
1 1 1
+

42.3:6 (3+n) (6+n) t 42.4-6 (4+n) (6+n) +4-3-2-4--6 (2+n) (4+n) (6+n)

if 1 is even, . (-Di-1

0 i, _
While i=2;3;4;.., o —[ i—1, ifiis odd, r o; =i+ C442in
(_1)ico,n + 1 1 1
4(+2)({+2+m) 4-2(2+n) 4-3(3+n) 4 -4 (4+n)
1 1 1 1
I sGAn) T266G+n £ 24C+n) @+ 2 252+0G+n) T
1 1 1
P R 262+ G6+n) #3538+ G+n) 42363+ 6+0)
1 1
t e 2 6G@rn 6+ n) £ 246C+m) GrnGrn T
+ - | (10)
4%i/2§(i=2)(i—-4)...;(i+n) (i—=2+n) (i—4+n)...(a;+n)]’

Let us designate special auxiliary functions
o 1
D) acrr) YASIND SN | LA . (11)

Tp= Tl+1—01_[77 O (2+20+7141-n) (2+20+T141-+n)
Consideringc, ,, = 4, equations of system (10) whilke> 2 can be expressed as

1
C8n = Ja+n) z_ZPZ'O]’ Clon = M[ t 22 P3 0 ]

Clznzm[ +22P40+ P41] CM“:m[ +22P50+ P51]

C16n:m[ +22P60+ P61+ P62] C18n:m[ +22P70+ P71+ P72]

. ;-2
(1) : 1
i l 1+ lezo 2%(2+21) Pi,l l (12)

C . [ < —
4+2Ln (i+2)(i+2+n)

Example of calculating coefficients of line (8).

According toformulas (11) - (12) we define coeféiots of line (8): ag;,, and byi,y.

ag—2

1

. n*
Solution. a) Cizn = C4+2-4)n = m [ 1+ lezo zoc(zT.l)Pél-,l l = =

6(6+n)[ ++Zizo “<2+21)P4l] 6(6+n)[ +22P4°+ P“]

Let us define value of coefficieRf o:



1 1
P = = =
-0 Z I 1(2 +2n+ 1) (24 20+ 1y +1) 4 @2+1)2+1 +n)
=

T1=0 T]=0

1 1 1

Py = + +
*0 722 +n) 3(3+n) 4(4+n)

; — V0 11 1
We define P; = X7 -0 ZTZ=0 [17=0 (Z+2n+ts_n)(2+2n+tsntn)

Since

1
1 1

nljl 2+ +1 )2+ 20+ T q+1) Q+T)R+T+1)Q2+2+1, )2+ 2+ T, +1)

1
(2 +T2) (2 +T2 +n) (4+T1)(4+T1 +n)

, We receive

1
Z Z 2+1,) 2+1, +n)(4+r1)(4+rl+n)

T1= 0T2—

1 _ 1
=0(2+T2) QR+1+n44+n) 2 Q+n4d+n)

PlacingP,, andP,; into formula c;,, = Pio+= P41] we receive

6(6+n) [1 T 22

_ [ 1 1 1 1
~ 6(6+n) 4-2(24n) = 4-3(3+n) 4-4(4+n) 42.2:4 (2+n) (4+n)

Ci2n

_ _ (-1’ = 1 1 1 1 _
C) C1an= C+250n = GrpGaor l +2,% mps,ll = m[ 1+ Zl:oza(zT.l)PS,l] =

-1

~ 7(7+n) 1+ TTZPSO 20‘4P51] 7(7+n)[ +22P5°+ P51] ’
1 1

P 0o = 2_13:1_ = = Z‘L'l_

=0 Hn 0 (2+2n+71_p)(2+2n+71_p+n) =0 (247 (2+1,+n) -

1 1 1 1
= 22+n 3G+n) 2@+n) 5G+n)

=Y o Xo_ TIie -

2= ~olln 0 (2+2n+12-y))(2+20+T5—y+n)’

1 1
1:!(2"'277+Tz—n)(2+2U+T2—n+n) 241 R n@+)@ 0’




1
Z Z(2+’L‘2) (2+tz+n)(4+tl)(4+rl+n)

1= 0‘['2—
1

1 4 1
T2=0(2+T2) (2+1; +n)4(4 +n) ;0(2+12) Qtn+nG@G+D@E+1+n)

1 1 1
- n n .
22+n)4(4+n) 224+n)5(5+n) 3(B3+n)5(5+n)
-1 1 1
Cian = m[l +2—2P5’0 +;P5‘1] =>
_ 1 [1+ 1 n 1 n 1 n 1 +
“n =TIl T4 22+n) 43GB+n) " 4-4(4+n) 4-5(5+n)

1 1 1
42.2:4 (2+n) (4+n) t ot 42.2:5(2+n) (5+n) +42-3-5(3+n) (5+n)]

Algorithm of calculating coefficients P; ;

In order to simplify the process, algorithm of edéting coefficients of line

i-2— Zl ZTl l 1 ,
— > + .
Py = 1= Tz =0 """ H1744=0 Hn_o (2+2n+7141-9) (2+20+T141-5+n)’ i=2+2l

will be studied at the example of forming multiglems, presented as

Qip = X5 2H N g 2r, o l=o(2+ 20 + 1p40y), P2 2421

Ti+1

Let u first define consequences of sug with the same index of [.

While [ =1 we receive

Zrl_o Zfz 01'[11,=o (2 +2n + Tz—n) 211—0 Zfz 0(2+T2)4 = Zgzzo(z‘*‘fz)‘l’ =2-4,

Q“_Z Zn 2+2n+1-y) = Z Z(2+T2)(2+2+T1)—

=017,=0n= T1=01,=

Z(2+T2)(2+2)+Z(2+T2)(2+2+1)—2 44+2-54+3-5,

T,=0 72=0
2 T1 1
Qo1 = Z z 1_[ 2+2n+71,-,) = Z Z +1,)2+2+1) =
T1=07,=0n=0 T1=01,=
0 1 2
- Z (247,)(2 + 2) + Z 247,)2+2+1) + Z (247,)(2+2+2) =
T2=0 T2=0 T2=0



=2-44+2-54+3:54+2:-6+3:-6+4"6,

Qyq = 23: iﬁ 2+2n+1,-y) = 23: i(2+rz)(2+2+rl)=

71=07,=07n=0 T1=07,=0
0 1 2 3
- Z(z+rz)-4+ Z(2+TZ)-5+ Z(2+T2)'6+ Z(2+12)-7=
T2=0 T2=0 T2=0 T2=0
=244+2-5+3:54+42:6+3:-6+4:-64+2-7+3-7+4-7+5-7 etc.

Consequences of multipliers in summands of the studied sums Qs;, Qg4 ,Q7; can be easily
composed with triangular matrixes

4 gee 9.6 24 25 26 27
_(2-4 2-5 ~ o 0 3:5 3.6 37
As'l—(o 3-5)' Aé’l_(g 305 2-66) An=\ 0 "0 4.6 4-7)

: 0 0 0 57

As this trait is possessed by all expressionggf we shall call thenmultiple multinomials of
triangular presentation, and functiong; ;(n) that present their modification, will therefore ba
namedmultiple sums of triangular presentation.

Solution of edge problem 1. Uniting the received results, we define solutioprblem (1) -
(2) in polar coordinates

10 ou 1 0%u p? _
75 (P5) + o~ e =0 13
u|p=1 =h

According to formula (3):u(p, @) = F(p) ¥(p).

Above we have proved that after splitting varialdéproblem (13) we receive two equations,
the first one

F'4+ AF=0
has proper solutions (6)
&, (p) = A, cos(ngp) + Bysin (np), n=20;1;..,

For each fixed n the second equation

4
PP+ p¥ — (2

2 —
L +n?) ¥, =0,
has proper solutions, presented as (8)

_ 1
¥ =p" (4 + 2(2+n)
Coefficients of degree line (8) are defined acowydo formulas (12)

. a;—2
(1! T _ 1 —0-1-9-
(i+2)(i+2+n) [ 1+ Zl=0 2%@+2D Py l’ n=012..,

1 .
p* - mpf"*‘- i, Catain P‘HZl)-

Cay2in =



in which o; =i+ 22

, and multiple multinomial®; , are defined by correlations (11)

o yi-2-2lyT 7 ! 1
Pl'l ZTl:o T2=0"" ZTl+1=0 ano (2+20+7141-9) (2420471419 +n)

Placing expressiong,, (¢) and ¥, (p) into formula (3), we define two systems of proper
functions {cos(ny) ¥} and {sin (n@)¥,}; that are met by certain solutions of the first
equations (13)

un(@,p) = Yu(p)[Ay, cos(ng) + B, sin(ng)].
Superposition of all these solutions

u(p,p) = Xn=o ¥n(p)[An cos(ng) + B, sin(ng)] (14)

Will also be solution of this equation.
Coefficients A,, and B, are defined from border condition (13)

u(e, 1) = h(p) =Xh=0 Yn(1)[A, cos(ng) + By sin(ng)], (15)
if function h 3 C2(AD) is distributed into absolutely and equally comeat trigonometrical
line of Fourier

() = =+ Ei-ila, cos(ng) + by sin(ng)], (16)

ap = %f_nn h(t) dt, a, = %f_nnh(t) cos(ng) dt, n=1;2;....

b, = %f_nnh(t) sin(ng) dt, n=1;2;....
Comparing lines (15) and (16), we receive

_ Ao _ Qn _ by,
O T2y, TV v T w0’

n=12;.. a7

Applicability of the principle of superposition.

Convergence of the constructed lines, possitifitiheir differentiation in circlé and
also continuity of functiom(¢, p) at the border of this circle are proved via cleaismethods
[2,p.308 — 310 ].

Via alternating method of Schwartz the formed s8otucan be prolonged outside circle
borders into areas of more general view [1].
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