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About theinvestigation of the stability of functional differential equations
of retarded type

In the work there is investigated the stabilitytbé zero solution of a non-autonomous
functional differential equation of the delayedeyipy means of limiting equations and Lyapunov
constant-sign functional. An appropriate illustragi example is given.

1. Introduction. Basic definitions and limiting equations.
Suppose R is a real axis,R" is a real linear space of n-vectors x with a ndxp

h=const>0 is a real numberC is the Banach space of continuous functigng-h0] - R" with a
norm |¢ =sup(l¢(s)|,~h<s<0), C, is a space{¢ OC:|p|<H,H >0}. For a continuous
function X:]—co,+od ~ R" and everyt R, the function X (S)UC,, is defined by the equality
X (s) =X(t +s),s0[-h0]. A right-hand derivative is denoted t).

The functional differential equation with a finidelay

X(t)=f(t,x),f 0 =0 Q)

is considered, wheré : R xC,, - R" is a continuous function which satisfies the agstions 1-3
[1, 2].

2. Basicresults. Stability theorems.

We will investigate the problem of the stability dime base of Lyapunov constant-sign

functionals. We shall use the following definitions
Definition 1. The solutionx=0 of Eq.(1) is stable with respect to seto c,, , if, for any

£>0 one can get=94¢) >0 , so that forg DA n{||¢| <3} itis true that|x ¢.0,¢)|<& for each

solution X{,0¢) of Eq.(1) for anyt >0.

Definition 2. The solutionx=0 of Eq.(1) is uniformly asymptotically stable witbspect to
setA O c,, , ifitis stable with respect ta. 0 c,, and aA>0 exists, so that for ang >0 one can

get T=T(£) >0 so that for everyg OA n{|¢| <A} it is true thatx, (0,¢)| <& for anyt=T
Definition 3. The solutionx=0 is a point of uniform attraction for the whole fiynof
limiting equations{)‘((t) = f*(t,x[)} with respect to se\[IC,,, if a A exists, so that for any
£>0 there isT =T(&) >0, so that for any solutiox” t (@, )¢ OA N {j|¢|| < A} of any equation
X(t) = £7(t,x) foranyt=T the inequality|x; (0,¢)] < & holds.
Suppose  V:R'xC, - R’ is a certain continuous functional,
x=x(¢,a,9),(a,¢) OR"xC, is a certain solution of Eq.(1). Along this sotutithe functional V is



a continuous time-dependent functidA(t) =V (t,X (a,¢)). For this function it is possible to define
an upper right-hand derivatié(t, ) .

Let us denote asa(u) continuous strictly monotonically increasing fuinos
@:R - R,w0)=0 .

Definition 4. Let us define a set for the functioné(t,®):

V(@0 ={g0C, :04,0C, .0, — +0:4, » gV (t,.4,) - O.n - +}.

The definitions which have been introduced enalléouderive the sufficient conditions of
stability and asymptotic stability when a non-negatfunctional with a non-positive derivative

exists.
Theorem 1. Suppose that:

1) a continuous functional V:R"xC, - R’ exists, So that
V(t,§)= 0V (,0)=0V(t,¢) <0t @) IR xC,;
2) the solutionx=0 is a point of uniform attraction for solutiorﬁ)’;(t) =f (t,x[)} with
respect to the set, =V ™ (»,0).
Then the solutiork =0 is stable by Lyapunov.
Theorem 2. We will assume that:
1) the continuous functional exists: R" xC, — R"such that:
0<V(t.8) < gV ¢.0) =0V, ¢) <0,
t.¢)OR" xC,
2) the solution x=0 is asymptotically stable uniformly with respetd the set
Ny =V (0.
Then the solutiom=0 of equation (1) is uniformly stable by Lyapunov.
3. Conclusion. There is the development of the method of Lya&punonstant -sign

functionals with using of the limit equations iretlwork. The obtained theorems 1,2 develop and
expand some results from [2].
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