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About the investigation of the stability of functional differential equations  
of retarded type 

. 
In the work there is investigated the stability of the zero solution of a non-autonomous 

functional differential equation of the delayed type by means of limiting equations and Lyapunov 
constant-sign functional. An appropriate illustrating example is given. 

 
1. Introduction. Basic definitions and limiting equations. 

Suppose  R  is a real axis, nR  is a real linear space of n-vectors  x with a norm |x|, 

0>= consth  is a real number, C is the Banach space of continuous functions nRh →− ]0,[:ϕ  with a 

norm )0|,)(sup(| ≤≤−= shsϕϕ , HC  is a space }0,:{ ><∈ HHC ϕϕ .  For a continuous 

function nRx →+∞∞− [,:]    and every Rt ∈ ,  the function   Ht Csx ∈)(   is defined by the equality 

].0,[),()( hsstxsxt −∈+=  A right-hand derivative is denoted by )(tx& . 

The functional differential equation with a finite delay 
0)0,(),,()( ≡= tfxtftx t&       (1) 

is considered, where n
H RCRf →×+:  is a continuous function which satisfies the assumptions 1-3 

[1, 2]. 
2.  Basic results. Stability theorems.  
We will investigate the problem of the stability on the base of Lyapunov constant-sign 

functionals. We shall use the following definitions. 
Definition 1. The solution 0=x  of Eq.(1) is stable with respect to set 

HC⊂Λ , if,  for any 

0>ε   one can get 0)( >= εδδ   , so that for }{ δϕϕ <∩Λ∈
 
 it is true that εϕ <|),0,(| txt  for each 

solution ),0,( ϕtx  of Eq.(1) for any 0≥t . 

Definition 2. The solution 0=x  of Eq.(1) is uniformly asymptotically stable with respect to 
set 

HC⊂Λ , if it is stable with respect to 
HC⊂Λ  and a 0>∆  exists, so that for any 0>ε  one can 

get ,0)( >= εTT  so that for every  }{ ∆<∩Λ∈ ϕϕ
 
it is true that εϕ <),0(tx  for any Tt ≥ . 

Definition 3. The solution 0=x  is a point of uniform attraction for the whole family of 
limiting equations { }),()( *

txtftx =&  with respect to set HC⊂Λ , if a ∆  exists, so that for any 

0>ε  there is ,0)( >= εTT  so that for any solution ),,0,(* ϕtx  { }∆<∩Λ∈ ϕϕ  of any equation 

),()( *
txtftx =&  for any Tt ≥  the inequality εϕ <),0(*

tx  holds.
  

Suppose ++ →× RCRV H:  is a certain continuous functional,  

HCRtxx ×∈= +),(),,,( ϕαϕα  is a certain solution of Eq.(1). Along this solution the functional V is 
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a continuous time-dependent function  )),(,()( ϕαtxtVtV = . For this function it is possible to define 

an upper right-hand derivative ),( ϕtV& . 

Let us denote as )(uiω  continuous strictly monotonically increasing functions 

  0(0),: i =→ ++ ωω RRi .  

Definition 4. Let us define a set for the functional ),( ϕtV : 

}.,0),(,:,:{)0,(1 +∞→→→+∞→∃∈∃∈=∞− ntVtCCV nnnnHnH ϕϕϕϕϕ  

The definitions which have been introduced enable us to derive the sufficient conditions of 
stability and asymptotic stability when a non-negative functional with a non-positive derivative 
exists. 

Theorem 1. Suppose that: 
1) a continuous functional ++ →× RCRV

Н
:  exists, so that 

Н
CRttVtVtV ×∈≤≡≥ +),(,0),(,0)0,(,0),( ϕϕϕ & ; 

2) the solution 0=x  is a point of uniform attraction for solutions { }),()( *
txtftx =&  with 

respect to the set )0,(1
0 ∞=Λ −V . 

Then the solution 0=x  is stable by Lyapunov. 
Theorem 2. We will assume that: 

1) the continuous functional  exists ++ →× RCRV H: such that:  

( )
HCRt

tVtVtV

×∈

≤≡≤≤
+),(

,0),(,0)0,(,),(0

ϕ

ϕϕωϕ &

 
2) the solution  x=0  is asymptotically stable uniformly with respect to the set  

).0,(1
0 ∞=Λ −V  

Then the solution x=0 of equation (1) is uniformly stable by Lyapunov. 
3. Conclusion. There is the development of the method of  Lyapunov constant -sign 

functionals with using of the limit equations in the work. The obtained theorems 1,2 develop and 
expand some results from [2]. 
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